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Abstract—We consider a time-optimal control problem with Fuller-type symmetry and with
control in the 2-dimensional unit disk. The problem can be solved analytically, with an implicit
representation of the Bellman function. The optimal value of this problem serves as an upper
bound on the optimal value of another optimal control problem with Fuller-type symmetry and
with a second-order singular trajectory, which cannot be solved analytically.
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1. INTRODUCTION

Optimal control problems are usually solved by means of the Pontryagin Maximum Principle
(PMP), which leads to a Hamiltonian system with discontinuous right-hand side [7]. Since the
Lipschitz-condition, as a consequence of the discontinuity, does not hold, the theorem of existence
and uniqueness of solutions to the Ordinary Differential Equation (ODE) does not hold, and the
phase portrait can exhibit various kinds of singularities, which appear in the optimal synthesis as
singular trajectories. Since such singular trajectories often arise as part of the optimal synthesis,
it is necessary to have a good understanding of these singularities. To this end a model problem is
considered which on the one hand, is easy enough to be solved, in the best case analytically, and
on the other hand, exhibits the kind of singularity under study.

The phenomenon of singular trajectories in optimal control was first discovered in [1], where
an example of a system was exhibited where the optimal control performs an infinite number of
switchings in finite time, so-called chattering. Singular trajectories were studied systematically in,
e.g., [2–4, 6]. The phenomenon of chattering was studied in detail in [5, 8]. A more complicated
system exhibiting chattering combined with a fractal optimal control pattern was investigated
in [9, 10].

In this work we study singular trajectories of second order, continuing the research program
initiated in the seminal work [8]. The first optimal control problem with a second-order singular
trajectory has been solved in [1]. It is given by the formulation

min

∞∫
0

x2

2
dt : ẋ = y, ẏ = u, u ∈ [−1, 1]. (1)

The second-order singular trajectory present in the phase portrait of the corresponding Hamiltonian
system is the trajectory x(t) = y(t) ≡ 0. A junction of a generic optimal trajectory of problem (1)
with the singular one is performed in finite time with an infinite number of switchings of the
control u between the extremal values ±1. The Bellman function of problem (1) has been explicitly
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770 HILDEBRAND, CHIKAKE MAPUNGWANA

computed in [9] and is given by

ω1D(x, y) =

⎧⎪⎪⎨⎪⎪⎩
−1

2
x2y − 1

3
xy3 − 1

15
y5 − γ(y2 + 2x)

5
2 , x � −βy|y|;

1

2
x2y − 1

3
xy3 +

1

15
y5 − γ(y2 − 2x)

5
2 , x � −βy|y|,

(2)

where β ≈ 0.4446 solves the equation

36β4 + 3β2 − 2 = 0

and γ =
−β2+2β− 2

3

10(1−2β)
3
2

≈ 0.06753. Recall that the expression −ω1D(x0, y0) is the optimal value of the

problem with initial data x(0) = x0, y(0) = y0.

The optimal synthesis of the problem exhibits a continuous symmetry. Namely, if (x(t), y(t), u(t))
is an optimal solution of problem (1), then for every λ > 0 the trajectory

(xλ(t), yλ(t), uλ(t)) = (λ2x(λ−1t), λy(λ−1t), u(λ−1t)) (3)

is also optimal [8]. Similarly, for every λ > 0 the Bellman function obeys the relation

ω1D(λ
2x, λy) = λ5ω1D(x, y). (4)

In [8] an analog of problem (1) with two-dimensional control was considered, namely

min

∞∫
0

‖x‖2
2

dt : ẋ = y, ẏ = u, u ∈ U = D, (5)

where D = {u ∈ R
2 | ‖u‖ � 1} is the unit disk. Here x(t), y(t) are vector-valued functions. This

problem also features a second-order singular trajectory at the origin (x, y) = (0, 0) of the space
R
2 ×R

2. It exhibits the same symmetry (3), but also an additional rotational symmetry. Namely,
for every optimal solution (x(t), y(t), u(t)) of problem (5) and every orthogonal matrix O ∈ O(2)
the trajectory

(Ox(t), Oy(t), Ou(t)) (6)

is also optimal. The Bellman function ω2D of problem (5) satisfies the symmetries

ω2D(λ
2x, λy) = λ5ω2D(x, y), ω2D(Ox,Oy) = ω2D(x, y)

for every λ > 0 and every O ∈ O(2). The rotational symmetry implies that the dynamics of the

optimal synthesis factors through to the Gramian

(
〈x, x〉 〈x, y〉
〈x, y〉 〈y, y〉

)
of the vectors x, y. The value at

time t of this 2× 2 matrix is determined solely by the initial value of the Gramian itself.

It was shown in [8, Proposition 7.8] that for linearly dependent initial vectors x(0), y(0) prob-
lem (5) reduces to problem (1), and the vectors x(t), y(t) stay in the 1-dimensional subspace spanned
by the initial vectors for all time. In particular, for linearly dependent vectors x = rx·(cosϕ, sinϕ)T ,
y = ry · (cosϕ, sinϕ)T the Bellman function satisfies

ω2D(x, y) = ω1D(rx, ry),

where rx, ry are allowed to take arbitrary real values.

Besides the optimal trajectories of problem (5) emanating from linearly dependent initial values,
a family of self-similar optimal trajectories has been computed in [8, Proposition 7.9, Corollary 7.3].
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ON OPTIMAL CONTROL PROBLEMS WITH CONTROL IN A DISC 771

For these trajectories, the tangent of the angle between the vectors x and y is constant and equals
−
√
5/2 (the values

√
5 and

√
5/2 in [8, p.233] are both erroneous), and between the vectors y and u

it is −
√
5. Moreover, 2〈y, y〉 =

√
6〈x, x〉. It follows that the Gramian of the initial values x(0), y(0)

is given by (
〈x(0), x(0)〉 〈x(0), y(0)〉
〈x(0), y(0)〉 〈y(0), y(0)〉

)
=

⎛⎜⎜⎜⎝
λ4
0

54
−λ3

0

27

−λ3
0

27

λ2
0

6

⎞⎟⎟⎟⎠ (7)

for some λ0 > 0. The Gramian of the corresponding trajectory evolves according to the formula

(
〈x(t), x(t)〉 〈x(t), y(t)〉
〈x(t), y(t)〉 〈y(t), y(t)〉

)
=

⎛⎜⎜⎜⎝
λ(t)4

54
−λ(t)3

27

−λ(t)3

27

λ(t)2

6

⎞⎟⎟⎟⎠ , λ(t) = λ0 − t. (8)

It follows that the parameter λ0 is the arrival time at the singular trajectory, which is located at
the origin (x, y) = (0, 0).

While the angles between the vectors x, y, u remain constant, the vectors themselves revolve ever
more rapidly around the origin, making an infinite number of revolutions in finite time. More con-
cretely, the direction each vector is pointing is given by the time-varying angle [8, Proposition 7.9,
Corollary 7.3]

ϕ(t) = σ
√
5 log(λ0 − t) + const, (9)

where σ ∈ {−1,+1} determines the direction of revolution and the additive constant on the initial
conditions.

The complete optimal synthesis of problem (5) is currently unknown. In this paper we compute
an upper bound on the objective value by constructing a sub-optimal solution. This upper bound
has to satisfy several, potentially conflicting criteria:

• the bound should be reasonable close to the true value

• the bound should be efficiently usable numerically, e.g., given by a global analytic expression

As we have seen from the analysis above, the optimal solutions for different initial values can be
quite different from each other. Constructing a bound which is everywhere close to the optimal
value and at the same time not given by a multitude of different expressions for different phase
space regions is a challenging task.

We cope with this difficulty by solving the time-optimal control problem

min (T − t0) : ẋ= y, ẏ= u, u ∈ U =D, x(T ) = y(T ) = 0, x(t0) = x0, y(t0) = y0, (10)

which up to a shift of the time variable t has the same feasible set of trajectories as problem (5) but
another objective value. This is accomplished in Section 2. In Section 3 we substitute the obtained
time-optimal solution in the objective value of the original problem (5) to obtain the upper bound.
Finally, in Section 4 we compare the upper bound with the optimal value of problem (5) on those
trajectories where the latter is known. It turns out that, on the one hand, the quality of the bound
is reasonably good on all initial values for which the optimal solution of problem (5) is known, and
on the other hand it is given by a single analytic expression.

2. TIME-OPTIMAL CONTROL PROBLEM

In this section we analytically solve the time-optimal control problem (10).
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772 HILDEBRAND, CHIKAKE MAPUNGWANA

Let us apply the PMP. Introduce adjoint variables φ,ψ and assemble the Pontryagin function

H = −1 + 〈φ, y〉+ 〈ψ, u〉. (11)

The optimal control is then given by û = argmaxu∈U H = ψ
‖ψ‖ whenever ψ �= 0. The dynamics of

the adjoint variables is given by

ψ̇ = −∂H
∂y

= −φ, φ̇ = −∂H
∂x

= 0.

Since the terminal time instant T is not fixed, we also have the transversality condition

H(T ) = 〈ψ, û〉 − 1 = ‖ψ‖ − 1 = 0. (12)

Hence the function ψ(t) = φt+ ψ(0) is affine and at t = T terminates on the unit circle.

By virtue of the rotational symmetry, without loss of generality we may assume that ψ̇ = −φ =
(α, 0)T is collinear with the unit basis vector e1 = (1, 0)T and α � 0. In the case α > 0 we shall
choose the initial value t0 of the time variable such that ψ(0) = (0, β)T is collinear with e2, and
β � 0.

Case αβ = 0: In this case the adjoint variable ψ evolves in a 1-dimensional linear subspace
of R2. Hence also u, y, x have to evolve in this subspace, and the problem reduces to the well-
known 1-dimensional time-optimal control problem with acceleration bounded by 1, which is given
by (10) with all variables considered as scalars.

In this case the adjoint variable φ is a scalar constant. Let us shift the time variable such that the
final time T is zero. Then the adjoint variable ψ has terminal value ψ(T ) = ψ(0) = σ ∈ {−1,+1}
and is given by ψ(t) = σ − φt. The optimal control u is piece-wise constant, given by

û(t) =

{
+1, if σ > φt,
−1, if σ < φt.

Equivalently, with φ̃ = σφ we get

û(t) =

{
+σ, if 1 > φ̃t,

−σ, if 1 < φ̃t.

This yields

y(t) =

t∫
0

û(s) ds =

{
σt, if 1 > φ̃t,

−σ(t− φ̃−1) + σφ̃−1, if 1 < φ̃t

and further

x(t) =

t∫
0

y(s) ds =

⎧⎪⎪⎨⎪⎪⎩
σ
t2

2
, if 1 > φ̃t,

−σ
t2 − φ̃−2

2
+ 2σφ̃−1(t− φ̃−1) + σ

φ̃−2

2
, if 1 < φ̃t

The case 1 > φ̃t is hence possible only if x = σ y2

2 = −y|y|
2 , in which case t0 = σy0. For any other

point in the x, y plane we must have 1 < φ̃t. Hence the locus of the equation x+ y|y|
2 = 0 separates

the x, y plane in two regions, where different values of the control must be optimal. The separating
curve consists of the two trajectories which arrive directly at the origin (see Fig. 1).

In particular, for 1 < φ̃t we have

û = −σ = −sgn

(
x0 +

y0|y0|
2

)
.
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Fig. 1. Optimal synthesis for the 1-dimensional time-optimal control problem. To the left of the curve
separating the two regions we have û = +1 and σ = −1, to the right û = −1 and σ = 1. The
trajectories of the system switch to the opposite control when they arrive at the separating curve.

Further, σy0 = −t0 + 2φ̃−1, σx0 = − t20
2 + 2φ̃−1t0 − φ̃−2 and hence

φ̃−1 = −

√
σx0 +

y20
2
, t0 = −σy0 − 2

√
σx0 +

y20
2
.

For t0 < t < −
√
σx0 +

y20
2 we thus finally obtain

y(t) = −σt− 2σ

√
σx0 +

y20
2
, x(t) = −σt2

2
− 2σ

√
σx0 +

y20
2
t− x0 −

σy20
2

with σ = sgn
(
x0 +

y0|y0|
2

)
.

Case α > 0, β > 0: In this case ψ(t) = (αt, β)T . Since ‖ψ(T )‖ = 1, we must have β � 1 and
α2T 2 + β2 = 1.

Introduce the scaled time variable τ = αt and the scaled starting point τ0 = αt0 and end-point
τ̄ = αT . Then we get β =

√
1− τ̄2. Consequently, ‖ψ(t)‖ =

√
τ2 + 1− τ̄2. The optimal control is

then given by

û =
ψ

‖ψ‖ =
(τ, β)T√
τ2 + β2

. (13)

Since the system is autonomous, the Pontryagin function (11) is constant along the trajectory,
and by the transversality condition (12) we get the energy integral H = −1− αy1 +

√
τ2 + β2 ≡ 0.

Hence

y1 =

√
τ2 + β2 − 1

α
. (14)

For the other component of y(t) we get the solution

y2 =

t∫
T

β√
α2s2 + β2

ds =

τ∫
τ̄

β√
s2 + β2

ds

α
=

β

α

(
arsinh

τ

β
− artanh τ̄

)
. (15)

Here we used that arsinh τ̄
β = arsinh τ̄√

1−τ̄2
= artanh τ̄ .
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Integrating further, we obtain for the function x(t) =
∫ t
T y(s) ds =

∫ τ̄
τ y(s/α) ds

α that

x1 =
1

2α2
τ
√
τ2 + β2 +

β2

2α2
arsinh

τ

β
− τ

α2
− 1

2α2
(β2 artanh τ̄ − τ̄),

x2 =
βτ

α2
arsinh

τ

β
− β

α2

√
τ2 + β2 − βτ

α2
artanh τ̄ +

β

α2
.

Let us compute the elements of the Gramian. After insertion into the scalar products and
simplification we get

α4‖x‖2 = 1

4
τ4 +

(
β2 artanh 2τ̄ +

5β2

4
+ 1

)
τ2 −

(
β2 artanh τ̄ + τ̄

)
τ

∗+ 1

4

(
4β4 + 3β2 + 1 + β4 artanh 2τ̄ − 2β2τ̄ artanh τ̄

)
∗ − τ2

√
τ2 + β2 +

1

2

(
3β2 artanh τ̄ + τ̄

)
τ
√
τ2 + β2 − 2β2

√
τ2 + β2

∗ − 2β2τ2 artanh τ̄ arsinh
τ

β
+ β2τ arsinh

τ

β
− β2

2

(
β2 artanh τ̄ − τ̄

)
arsinh

τ

β

∗ − 3β2

2
τ
√
τ2 + β2 arsinh

τ

β
+ β2τ2 arsinh 2 τ

β
+

β4

4
arsinh 2 τ

β
, (16)

∗α3〈x, y〉 = 1

2
τ3 +

(
β2 artanh 2τ̄ +

β2

2
+ 1

)
τ − β2

2

√
τ2 + β2 arsinh

τ

β

∗+ 1

2

(
β2 artanh τ̄ + τ̄

)√
τ2 + β2 − 3

2
τ
√
τ2 + β2 +

β2

2
arsinh

τ

β
− 1

2

(
β2 artanh τ̄ + τ̄

)
∗+ β2τ arsinh 2 τ

β
− 2β2τ artanh τ̄ arsinh

τ

β
, (17)

∗α2‖y‖2 = τ2−2
√
τ2+β2+β2 arsinh 2 τ

β
−2β2 artanh τ̄ arsinh

τ

β
+
(
β2 artanh 2τ̄ +β2+1

)
. (18)

2.1. Computation of the Parameters α, τ̄ , τ0

In order to compute the time-optimal trajectory for a given initial value of the Gramian(
‖x0‖2 〈x0, y0〉
〈x0, y0〉 ‖y0‖2

)
, we have to invert the above dependence to obtain the values α, τ̄ , τ0.

The dependence on α is algebraic. Multiplication of α by a constant λ multiplies the Gramian
from the left and from the right by the diagonal matrix diag(λ−2, λ−1). In the cone S2

+ of positive
semi-definite 2 × 2 matrices this action defines 1-dimensional orbits of radial type, each of which
intersects every affine compact non-zero section of the cone S2

+ in exactly one point. The orbit

itself then depends only on the parameters τ0, τ̄ . It can be represented, e.g., by the two ratios ‖x0‖2
‖y0‖4 ,

〈x0,y0〉
‖y0‖3 .

The dependence of the orbit on the parameters cannot be inverted in closed form. In order to
shed light on it, let us compute the limit when the parameters τ0, τ̄ tend to the boundary of their
domain of definition. Recall that −1 < τ̄ < 1, τ0 < τ̄ .

In the limit τ0 → τ̄ we obtain arsinh τ0
β → arsinh τ̄

β = artanh τ̄ ,
√
τ20 + β2 → 1. Inserting with

τ = τ0 into (16), (17), (18) we obtain that the Gramian of the initial point (x0, y0) tends to 0.
However, if at the same time α → 0 such that the ratio τ̄−τ0

α = T − t0 equals 1, then the control
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Fig. 2. Limits of the ratios ‖x0‖2

‖y0‖4 ,
〈x0,y0〉
‖y0‖3 when τ̄ , τ0 tend to the boundary of their domain of definition.

The limit is different from (14 ,−
1
2 ) only for τ̄ → 1, τ0 < 0 and is located on a parabola.

tends to the constant function û ≡ (τ̄ , β)T and the trajectory tends to a segment of a parabola given
by x(t) = 1

2(t− T )2û, y(t) = (t− T )û. Hence x0 → 1
2(τ̄ , β)

T , y0 → −(τ̄ , β)T , and the Gramian

tends to

(
1
4 −1

2
−1

2 1

)
. In particular, ‖x0‖2

‖y0‖4 → 1
4 ,

〈x0,y0〉
‖y0‖3 → −1

2 .

In the limit τ̄ → ±1 we get β → 0, β arsinh τ
β → 0, β artanh τ̄ → 0,

√
τ2 + β2 → |τ |. Inserting

into (16), (17), (18) we get

α4‖x‖2 → 1

4
τ4 + τ2 +

1

4
− τ2|τ |+ 1

2
τ̄ τ |τ | − τ̄ τ,

α3〈x, y〉 → 1

2
(|τ | − 1) (τ(|τ | − 2) + τ̄) ,

α2‖y‖2 → (|τ | − 1)2.

For τ̄ → −1 we have τ � −1 and |τ | = −τ . Setting α = −1− τ0 such that again T − t0 → 1,

this yields

(
‖x0‖2 〈x0, y0〉
〈x0, y0〉 ‖y0‖2

)
→
(

1
4 −1

2
−1

2 1

)
and the ratios ‖x0‖2

‖y0‖4 ,
〈x0,y0〉
‖y0‖3 tend to the same limits

1
4 ,−

1
2 as above.

For τ̄ → 1 we obtain

⎛⎝ ‖x0‖2 〈x0, y0〉

〈x0, y0〉 ‖y0‖2

⎞⎠→

⎛⎜⎜⎜⎝
1

4

(τ0(|τ0| − 2) + 1)2

α4
−1

2

(1− |τ0|) (τ0(|τ0| − 2) + 1)

α3

−1

2

(1− |τ0|) (τ0(|τ0| − 2) + 1)

α3

(1− |τ0|)2
α2

⎞⎟⎟⎟⎠
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and ‖x0‖2
‖y0‖4 → 1

4
(τ0(|τ0|−2)+1)2

(1−|τ0|)4 , 〈x0,y0〉
‖y0‖3 → −1

2
τ0(|τ0|−2)+1

|1−|τ0||(1−|τ0|) . If τ0 � 0, then these limits are again equal

to 1
4 ,−

1
2 . For τ0 � 0 they equal

((1+τ0)2−2)
2

4(1+τ0)4
, (1+τ0)2−2
2|1+τ0|(1+τ0)

, and limτ̄→1
‖x0‖2
‖y0‖4 =

(
limτ̄→1

〈x0,y0〉
‖y0‖3

)2
.

For τ̄ = 1, τ0 ∈ (−∞,−1) the ratio 〈x0,y0〉
‖y0‖3 rises monotonely from −1

2 to +∞. For τ0 ∈ (−1, 0] it

rises monotonely from −∞ to −1
2 . The boundary values of the ratios ‖x0‖2

‖y0‖4 ,
〈x0,y0〉
‖y0‖3 are depicted on

Fig. 2.

Finally, if τ0 → −∞, then the Gramian grows unbounded. However, if we simultaneously let α →

+∞ such that −τ0
α → 1, then the leading terms in τ0 dominate and again

(
‖x0‖2 〈x0, y0〉
〈x0, y0〉 ‖y0‖2

)
→(

1
4 −1

2

−1
2 1

)
.

Hence if the parameters τ̄ , τ0 circumvent the boundary of their domain of definition, the pair

(‖x0‖2
‖y0‖4 ,

〈x0,y0〉
‖y0‖3 ) moves along the parabola on Fig. 2, including the infinitely far point. Except the

interval (τ̄ , τ0) ∈ {1}×R−− the ratio pair tends to the point (14 ,−
1
2). For τ̄ ∈ (−1,+1), τ0 < τ̄ the

pair takes values right of the parabola.

The values of α, τ̄ , τ0 producing a given Gramian of x0, y0 can then be obtained as follows.

Compute the ratios ‖x0‖2
‖y0‖4 ,

〈x0,y0〉
‖y0‖3 . Determine the values of τ0, τ̄ yielding these ratios. This can be

done, e.g., by tracing the level lines of the ratios as a function of τ̄ , τ0, finding their intersection,
and refining the values with the Newton method. In a final step determine α, e.g., from (18).

3. UPPER BOUND ON THE OBJECTIVE VALUE

In this section we compute the objective value of problem (5) on the time-optimal trajectory
computed in Section 2. We again consider the two cases from the previous section.

Case α > 0, β > 0: The objective value of the time-optimal trajectory for the original cost
function is given by

1

2

T∫
t0

‖x(s)‖2 ds = 1

2

τ̄∫
τ0

‖x(τ/α)‖2 dτ

α
=

1

2α5

τ̄∫
τ0

α4‖x‖2 dτ.

Integrating expression (16) with respect to τ we get

τ5

20
+

1

3

(
71

36
β2 + β2 artanh 2τ̄ + 1

)
τ3 − 1

2

(
β2 artanh τ̄ + τ̄

)
τ2

+
1

36

(
9β4 artanh 2τ̄ − 18β2τ̄ artanh τ̄ + 56β4 + 27β2 + 9

)
τ

− 1

9

(
3β2τ̄ − 5β4 artanh τ̄

)√
τ2 + β2 − 11β2

8
τ
√
τ2 + β2

+
1

18

(
13β2 artanh τ̄ + 3τ̄

)
τ2
√
τ2 + β2 − 1

4
τ3
√
τ2 + β2

− 5β4

8
arsinh

τ

β
− β2

2

(
β2 artanh τ̄ − τ̄

)
τ arsinh

τ

β
+

β2

2
τ2 arsinh

τ

β
− 2β2

3
τ3 artanh τ̄ arsinh

τ

β

− 5β4

9

√
τ2 + β2 arsinh

τ

β
− 13β2

18
τ2
√
τ2 + β2 arsinh

τ

β
+

β4

4
τ arsinh 2 τ

β
+

β2

3
τ3 arsinh 2 τ

β
.

For τ = τ̄ this expression evaluates to

1

1080

(
(1024β4 − 163β2 + 54)τ̄ − 675β4 artanh τ̄

)
.
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Hence the objective value −ωTO of the time-optimal trajectory obeys

−α5ωTO = −τ50
40

− 1

6

(
71

36
β2 + β2 artanh 2τ̄ + 1

)
τ30 +

1

4
(β2 artanh τ̄ + τ̄)τ20

− 1

72
(9β4 artanh 2τ̄ + 27β2 + 56β4 − 18β2τ̄ artanh τ̄ + 9)τ0

+
1

2160

(
(1024β4 − 163β2 + 54)τ̄ − 675β4 artanh τ̄

)
+

1

18
(3β2τ̄ − 5β4 artanh τ̄)

√
τ20 + β2 +

11β2

16
τ0

√
τ20 + β2

− 1

36
(13β2 artanh τ̄ + 3τ̄)τ20

√
τ20 + β2 +

1

8
τ30

√
τ20 + β2

+
5β4

16
arsinh

τ0
β

+
β2

4
(β2 artanh τ̄ − τ̄)τ0 arsinh

τ0
β

− β2

4
τ20 arsinh

τ0
β

+
β2

3
τ30 artanh τ̄ arsinh

τ0
β

+
5β4

18

√
τ20 + β2 arsinh

τ0
β

+
13β2

36
τ20

√
τ20 + β2 arsinh

τ0
β

− β4

8
τ0 arsinh

2 τ0
β

− β2

6
τ30 arsinh

2 τ0
β
.

Case αβ = 0: For the 1-dimensional control problem we have

x(t)2

2
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t4

8
, if t > −

√
σx0 +

y20
2
,

1

2

⎛⎝ t2

2
+ 2

√
σx0 +

y20
2
t+ σx0 +

y20
2

⎞⎠2

, t < −
√
σx0 +

y20
2
.

Hence with φ̃−1 = −
√
σx0 +

y20
2 , σ = sgn

(
x0 +

y0|y0|
2

)
, and t0 = −σy0 + 2φ̃−1 the objective value

of problem (1) on the time-optimal trajectory is given by

1

2

0∫
t0

x(t)2 dt =
1

2

φ̃−1∫
t0

(
t2

2
− 2φ̃−1t+ φ̃−2

)2

dt+

0∫
φ̃−1

t4

8
dt

= − t50
40

+
t40φ̃

−1

4
− 5

6
t30φ̃

−2 + t20φ̃
−3 − t0φ̃

−4

2
+

φ̃−5

12

= −23

60
φ̃−5 +

φ̃−4σy0
2

− φ̃−2σy30
6

+
σy50
40

=
σy0x

2
0

2
+

x0y
3
0

3
+

σy50
15

+
23

60

(
σx0 +

y20
2

)5/2

. (19)

4. QUALITY OF APPROXIMATION

In this section we compare the objective value of the constructed sub-optimal solution with the
optimal objective value on those trajectories where the latter is known.

Let us first consider the 1-dimensional problem (1). Since both the optimal value (2) (multiplied
by −1) and the objective value (19) of the time-optimal trajectory satisfy the symmetry (4), the
relative gap between the two values depends only on the ratio x

|y|y . This gap is depicted on Fig. 3.

It varies between approximately 5.4× 10−5 and 5.6× 10−2.
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Fig. 3. Relative gap between the value of objective (1) on the time-optimal trajectory and on the

optimal solution. The time-optimal trajectory switches control on the curve x = − y|y|
2 , whereas the

optimal trajectory switches control on the curve x = −βy|y| with β ≈ 0.4446. The figures on the
right and bottom are zooms of the upper left figure.

Since both the time-optimal problem (10) and problem (5) reduce to their 1-dimensional versions
Fig. 1 and (1) if the initial values of the vectors x, y are collinear, the same gap is achieved for the
2-dimensional problems for these initial values.

Let us now consider the self-similar trajectories found in [8]. First we compute the optimal
value of problem (5) on these trajectories. By virtue of (4) the Bellman function on the self-similar
trajectories satisfying (8) obeys

ω2D(x(t), y(t)) =
λ(t)5

λ5
0

ω2D(x(0), y(0)).

Differentiating with respect to t and using dω(x(t),y(t))
dt = 1

2‖x(t)‖2 yields

ω2D(x(0), y(0)) = − λ5
0

540
. (20)

We now consider the value of the objective on the time-optimal trajectory with the same initial
values (7). To this end we have to invert relations (16), (17), (18), i.e., determine the values of
α, τ, τ̄ yielding these initial values.
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Fig. 4. Level curves of the ratios ‖x0‖2

‖y0‖4 ,
〈x0,y0〉
‖y0‖3 corresponding to the self-similar trajectory in the

(τ̄ , τ0) plane. The values of τ̄ , τ0 producing an initial point on this trajectory are given by the unique
intersection point of the curves (circle).

Following the scheme outlined in Section 2, we first consider the level curves of the ratios ‖x0‖2
‖y0‖4 ,

〈x0,y0〉
‖y0‖3 in the (τ̄ , τ0) plane. From (7) we get the values

‖x0‖2
‖y0‖4

=
2

3
,

〈x0, y0〉
‖y0‖3

=
2
√
6

9
.

The corresponding level curves are depicted on Fig. 4. Refining the values obtained graphically by
a Newton method we get

τ̄ ≈ 0.97116420999, τ0 ≈ −2.17695799429.

Inserting into (18) and setting ‖y0‖2 = λ2
0
6 by virtue of (7), we further obtain the value α ≈

4.13415835032λ−1
0 .

Inserting the parameter values into the expression for the objective value on the time-optimal
trajectory, we obtain the sub-optimal cost ≈ 0.0019779902706λ5

0 . Compared with the optimal cost
(20) computed above, this yields a relative gap of ≈ 6.8× 10−2.

Let us now compare the optimal control on the self-similar trajectory with the time-optimal
control on this trajectory. We choose the initial point which corresponds to the value λ0 = 1, thus
the optimal trajectory needs unit time to arrive at the origin.

The time-optimal control is given by (13), where τ runs from τ0 to τ̄ and the time variable
correspondingly from 0 to T TO = α−1(τ̄ − τ0) ≈ 0.7614904746. Note that the control evolves clock-
wise around the origin. Note also that the arrival time at the origin is smaller than the arrival time
T = 1 for the optimal trajectory, because the time-optimal control minimizes precisely the arrival
time. On Fig. 5 the polar angle of the time-optimal control is depicted as a function of time.

By (9) the optimal control on the self-similar trajectory evolves according to the formula

û = (cosϕ(t), sinϕ(t))T , ϕ(t) =
√
5 log(T − t) + const,

where T = λ0 = 1 is the arrival time of the trajectory at the origin and the constant is the polar
angle of the control at the initial time instant t = 0. In order to determine this constant we first
compute the initial value of y by formulas (14),(15). It amounts to

y(0) ≈
(

0.2878394861
−0.2895083711

)
.
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Fig. 5. Evolution of the polar angle of the optimal control and the time-optimal control for the same
initial point, located on a self-similar trajectory with arrival time T = 1. For t → 1 the optimal
control angle tends to infinity.

As mentioned in Section 1, the optimal control is directed at an angle π − atan
√
5 relative to y,

leading to an initial control angle of ≈ 3.5035658841. For t → T = 1 the polar angle of the control
decreases logarithmically, and the control revolves an infinite number of times around the origin.
The evolution of the angle as a function of time is depicted on Fig. 5.

5. CONCLUSIONS

In this paper we considered two optimal control problems, which share the feasible set of tra-
jectories but have different objective values. While the time-optimal problem (10) can be solved
analytically, for problem (5), which exhibits a singular trajectory of second order, only a limited
number of optimal trajectories are known explicitly.

We describe the solution of the time-optimal control problem and use its solution to construct
an upper bound on the objective value of problem (5). Comparison of the value of the sub-optimal
(time-optimal) solution with the value of known optimal trajectories shows that the relative gap in
objective value ranges from several thousandth of a per cent to several per cent. The difference in
the polar angle of the two controls can, however, be quite substantial (up to 45 degrees).

The upper bound can be used to constrain the locus of the optimal trajectories of problem (5)
in extended phase space (i.e., jointly with the adjoint variables) and thus simplify the analysis
of the optimal synthesis of this problem. More concretely, it was shown in [9] that the Fuller
symmetry (3) implies that the Bellman function is given by ω(x, y) = 1

5 (〈ψ, y〉 + 2〈φ, x〉), where
φ,ψ are the adjoint variables to x, y. Hence an upper bound on the objective value at a given
point (x, y) implies a linear inequality on the optimal values of the adjoint variables at this point.

Numerical experiments show that the self-similar trajectory is repulsive in the factor (orbit) space
with respect to the action of the symmetry groups, while the trajectories corresponding to the 1D
analog (1) are attractive. A rigorous proof of this property and a qualitative description of the
complete optimal synthesis of the problem remain open and will be subject of future investigations.
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